Overexcited MaxiK and KATP channels underlie obstructive jaundice-induced vasoconstrictor hyporeactivity of arterial smooth muscle
نویسندگان
چکیده
Substantial evidence has shown that obstructive jaundice can induce vascular hyporesponsiveness. The present study was designed to investigate mechanisms of MaxiK channel and KATP underlying cholestasis-induced vascular dysfunction. The isolated thoracic aorta was used to explore norepinephrine (NE)-induced contraction. The function of MaxiK and KATP channels were investigated using whole-cell patch clamp recording. Compared with Sham group, NE-induced vascular contraction was blunted after bile duct ligation (BDL), which could not be ameliorated significantly after endothelial denudation. Charybdotoxin and glibenclamide induced a more pronounced recovery from vascular hyporesponsiveness to NE in BDL group compared with Sham group. BDL significantly promoted the charybdotoxin sensitive MaxiK current and KATP current in isolated aortic smooth muscle cells. In addition, the expression of auxiliary subunits (MaxiK-β1 and SUR2B) rather pore-forming subunits (MaxiK-α and Kir6.1) was significantly up-regulated after BDL. These findings suggest that MaxiK and KATP channels play an important role in regulating vascular hyporesponsiveness in BDL rats.
منابع مشابه
Vasoconstrictors inhibit ATP-sensitive K+ channels in arterial smooth muscle through protein kinase C
The effects of vasoconstrictor-receptor (neuropeptide Y, alpha-adrenergic, serotonergic, histaminergic) stimulation on currents through ATP-sensitive potassium (KATP) channels in arterial smooth muscle cells were examined. Whole-cell KATP currents, activated by the synthetic KATP channel opener pinacidil or by the endogenous vasodilator, calcitonin gene-related peptide, which acts through prote...
متن کاملVanishing act: protein kinase C-dependent internalization of adenosine 5'-triphosphate-sensitive K+ channels.
Potassium channels play an important role in the regulation of vascular smooth muscle tone and, thus, contribute to the regulation of blood pressure, blood flow, and microvascular exchange.1 These channels importantly participate in the determination of vascular smooth muscle cell (VSMC) membrane potential,1,2 which, in turn, controls Ca influx through voltage-gated Ca channels1,2 and has been ...
متن کاملMitochondrial injury underlies hyporeactivity of arterial smooth muscle in severe shock.
BACKGROUND Our previous data showed membrane hyperpolarization of arteriolar smooth muscle cells (ASMCs) caused by adenosine triphosphate (ATP)-sensitive potassium channels (K(ATP)) activation contributed to vascular hyporeactivity in shock. Despite supply of oxygen and nutrients, vascular hyporeactivity to vasoconstrictor agents still remains, which may result from low ATP level. The study was...
متن کاملCalcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone.
Resistance arteries exist in a maintained contracted state from which they can dilate or constrict depending on need. In many cases, these arteries constrict to membrane depolarization and dilate to membrane hyperpolarization and Ca-channel blockers. We discuss recent information on the regulation of arterial smooth muscle voltage-dependent Ca channels by membrane potential and vasoconstrictors...
متن کاملPhysiological roles and properties of potassium channels in arterial smooth muscle.
This review examines the properties and roles of the four types of K+ channels that have been identified in the cell membrane of arterial smooth muscle cells. 1) Voltage-dependent K+ (KV) channels increase their activity with membrane depolarization and are important regulators of smooth muscle membrane potential in response to depolarizing stimuli. 2) Ca(2+)-activated K+ (KCa) channels respond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016